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summary 

The crystal structure of K [Al,(CH,),F] *C!,H, has been determined from 
three-dimensional X-ray data measured by counter methods. The compound 
crystallizes in the orthorhombic space group Pnina with cell dimensions a = 
14.071(5), b = 14.404(5), c = 8.862(3)S, and pcalc = 1.04 g-crnB3 for 2 = 4. 
Least squares refinement gave a conventional weighted R factor of 0.037 for 
973 independent observed reflections. In the fluorine-bridged anion, the alumi- 
num-fluorinealuminum bond angle is fixed at 180” by crystallographic sym- 
metry. The aluminum-fluorine bond length of 1.782(2) A is compared to other 
halogen-bridged systems. The potassium ion coordination sphere contains six 
methyl groups at distances from 3.23 to 3.47 a; the benzene functions as a 
molecule of crystallization with 3.947(7) a as the shortest benzene carbon-. 
potassium ion approach. 

Introduction 

In the preceding paper in this series [ 11, we enumerated a number of factors 
of importance in the formation of liquid complexes of compounds of the form 

MCaz (CH3 )6X1 with aromatic molecules. The dominant consideration-is that 
the anionic charge be localized and-quite available for interaction with the posi- 
tive ion. Compounds (such as KIAlz (CH3 )6 N3 ] ) which exhibit this solution be- = 
.haviour are. all believed to possess an angular anionic structure that .shows a sepa- 

..A AIRS 
R,AI AIR, .: 

(A) (8). 
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ration of organic and inorganic regions (A). A geometry of this nature affords 
ample op&%uuity for strong cation-anion interactions and for a-liquid orienta- 
tion of anions in + manner such as to trap aromatic molecules_ On the other hand, 
a symmetrical anionic ‘structure (B) does not produce the same solution effects. 
We report here the structural parameters of a molecule of this type, 
K[Alz (CH3 I6 F J - C6 H6, and point out the difference between molecules of 
solvation con&nonly found in a wide range of systems and the Liquid complex 
formation ; 

Experimental 

K [A&(CH:& F]- C,H, was prepared by the sealed tube reaction of 0.01 
mole of KF and 0.02 mole of Al(CHJ )3 in 0.10 mole of benzene. Reaction be- 
gan immediately and went rapidly to completion at 80” ; no evidence of the 
liquid layering effect [1,2] was noted. 

Single crystals of the colorless, air-sensitive product were selected from the 
benzene solution and sealed in thin-walled glass capillaries. The crysta1 system is 
orthorhombic and systematic absences allow the space group to be Przma or 
Pna2, . However, statistical tests based on normalized structure factors show 
that the correct choice is the centric &ma. The Iattice parameters as determined 
from a least-squares refinement of the angular settings of 12 reflections accurate- 
ly centered on an Enraf-Nonius CAD-4 diffractometer are: a = 14.071(5), b = 
X4.404(5), c = 8.862(3)A, pcalc = l-04 g*cm-3 for 2 = 4_ Data were collected 
on the CAD-4 diffractometer with graphite crystal monochromated copper radi- 
ation (X = 1.54051 A). The crystal, a rectangular block of dimensions 
0.40 mm X 0.50 mm X 0.40 mm, was aligned on the diffractometer such that 
no symmetry axis was coincident with the (b axis of the diffractometer_ 

The diffracted intensities were collected by the o-26’ scan technique with a 
take-off angle of 3.0”. The scan rate was variable and was determined by a fast 
(20” min” ) prescan. Calculated speeds based on the net intensity gathered in 
the prescan ranged from 7 to 0.5” min-’ . Background counts were collected for 
25% of the total scan time at each end of the scan range. For each intensity the 
scan width was determined by the equation: scan range = A f BtanO, where 
A = 0.85” and B = 0.45”. Aperture settings were determined in a like manner 
WithA = 4 mm and S = 4 mm. Other diffractometer parameters and the method 
of calculating standard deviations have been described previously [3]. As a check 
on the stability of the instrument and the crystal, one standard peak was 
measured period&“- * during data collection. No significant decrease in intensity 
was noted. 

One unique octant of data was measured out to 2@ = 120”; 973 reflections 
with intensities greater than background were recorded_ The intensities were cor- 
rected in the usual manner for Lorentz and polarization effects, but not for 
absorption because of the moderate value of the linear absorption coefficient 
(EC = 29.3 cm-* ); the estimated transmission factors differ by less than 5%. 

Fourier calculations were made with the ,ALFF [ 4]~rogram. The full-matrix, 
least-squares refinement was carried out using the Busing and Levy program 
ORFLS 151. The function xw( IF, 1 - IF, 1)2 was minimized. No corrections 
were made for extinction or anomalous dispersion. Neutral atom scatte?ing 
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factors were taken from the compilations of Cromer and Waber [6 3. Final bond 
distances, angles, and errors were computed with the aid of the Busing, Martin, 
and Levy ORFFE [7] program. The crystal structure illustrations were ob- 
tained with the program ORTEP [S] . -_ . 

Structure determination and refinement 

The position of the potassium and fluorine atoms werededuced from the 
Patterson map with the use of the symmetry demanded by the presence of 4 
molecules in the unit cell. An electron density map phased on these positions 
revealed the location of all nonhydrogen atoms in the asymmetric unit. Iso- 
tropic refinement led to a reliability index of 

Conversion to anisotropic refinement together with the application of a 
weighting scheme (W = l/o2 ) yielded R 1 = 0.058. At this point a difference 
Fourier map was calculated, and the hydrogen atom coordinates were de- 
termined. Further anisotropic refinement of nonhydrogen atoms and-refine- 
ment of the hydrogen atom positional parameters led to final values of RI = 
0.038 and 

R, = ( ZW(IF,I - IF,lY 44 = o 037 

EW(FcJ ,* I 
. 

The largest parameter shifts in the final cycle of refinement were less than 
0.05 of their estimated standard deviations. A final difference Fourier map 
showed no feature greater than 0.3 e/A3. No systematic variation of 
W(lq-J - lq~2 vs. l F,, I or (sin 0)/h was observed. The final values of the posi- 
tional and thermal parameters are given in Table 1”. 

Discussion 

Two features of the structure of the anion (Fig. 1) are worth particular note. 
Since the fluorine atom resides on a crystallographic center of inversion, the 
aluminum-fluorine-alunkum bond angle is 180”. The observed ahnninum~ 
fluorine bond distance, l-782(2) A, would by past standards be regarded as 
quite short even for a singly bonded fluorine atom [Q] . The same situation w& 
found for the closely related compound KIAlz (C, HS )6 F] [lo] , where the 
aluminum-fluorine distance is 1.820 (-3) A. Allegra and Perego postulated sp .. 
hybridization of the fluorine atom to explain the exact.lmear cooidination of the 
two ahnninum atoms. The aluminum-fluorine bond distance was accounted 
for by a degree of overlap b&we&n filled fluorine p orbitals and empty aluminum 

* The table of stnxture factors has beeo de&i&d & &_A&9Documenf No. 02235. with ASIS/NAPS. 
c/o Microfiche Publications. 305 E. 46th Street, New York;New Yozk iOOi7. A copy may be. 
secured by citing the document and remitting 1.50 for microfiche 015.00 for photocopies. 
Advance payment is required. Make checks payable to Microfiche Publications. 
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fig. 1. Structure of the IAl~<C~3)6FI-ion with the atoms presented as their 50% probabiity ellipsoids for 
thermal motion. 

d orbitals. However, the meaning of bond distances in compounds of this type 
is far from straightforward. While it is true that a bridging halide ion may ex- 
hibit a longer bond length than a terminal one (i.e., in [CH3AlC12]2 the Al-Cl 
bridge separation is 2.25(l) A compared to the Al-G terminal length of 
2.05 (1) A [11] ), factors other than intrinsic bond strength may play a large role. 
There now exist systems somewhat comparable to that of [Al* (CHB )6 F]- where 
the halogen-bonded element cannot use d orbit&. One such is the recently 
determined bromoylide structure (I) [12]. Here the two carbon-bromide bond 
lengths are not far different from that of bromobenzene (1_86(2)A) [13]. There- 
fore, the use of aluminum d orbit& is not necessarily implied by the aluminum- 
fluorine bond distance in either K[Al* (C, H5 )6 F] or KIAlz (CH, )6 F] l C, Hs . 

Ha&and and coworkers 1141 have recently added to the literature the struc- 
ture of a third fluorine-bridged organoaluminum compound: [(CHJ )z AlF] 4. In 
the puckered AL, F4 ring, the aluminum-fluorine distance is 1.810 (3) A and the 
aluminum-fluorine-aluminum bond angle is 146(3)“. Thus it seems that in 
organoaluminum compounds of this sort, an aluminum-fluorine bond length 
of 1.80 A should now be regarded as normal. 

The coordination sphere of the potassium ion, which lies on a mirror plane, is 
shown in Fig. 2 and the packing in the unit cell is illustrated by Fig. 3. The 
netiest neighbors are six methyl groups in symmetry related pairs at 3.230 (4), 
3.302 (3), &d 3.472 (4) A. Since the closest aryl-carbon-potassium approach 
is 3.947 (7) A, the benzene molecule merely occupies a lattice site, and has no 
strong preferential interaction with cation or anion. This behavior appears to be 
quite common [15,16] and should not be confused with the type of interaction 
shown by the solution studies [1,2] on K[Alz (CH, )6 N3 ] and structurally 
related compounds. 

,. 

(CH&AI - F 
+ 

- A?(CH,l, 

=gH5 

(I) 
.. 

(II) 1 



c c 

3 c -- 

= c 

Fig. 2.. Cedination sphere of .the potassium ion in K[Ali(CH3)6F] *CgHg . 
: 

-- The akminti&--carbon~ bond lengths of 1.943(5), l-946(5) and l-965(4) A 
fall -x&r the values observed in other similar we&determined structures: 
1.9&(Z) in [Al(C& )3 I2 [I73 -and l-971(4) in K[Al(CH,), CN] [163. With- 
in the &romatiC ring the bond lengths and-angles are normal for a benzene of 
Salvation C.187. 

a 

Fig. 3. Packing of four units of KC& ccXZ3)6Fl -CG?& shorrm with a superimposed unit cell. 



TABLE2 

INTERATOMIC DISTANCES (A) AND ANGLES (c) FOR K[ti2(CH3)5Fl ‘CfjH5 

Bond distances 

AI-F l-782(2) A+C<l) l-946(5) 
Al-C(2) 1.943(5) Al-C(3) l-965(4) 
c<4wxw 1.3X1(6) C<55-C(6) l-364(6) 
C<6PC<7) l-334(6) C(3)_H(7) 0.88 
C<l)_H(l) 0.900 C(3)_H(8) 1.05 
CClk-w2> 0.86 
ciij-xxisj 

0.80 C(3)_H(9) 
0.91 C<4j-H<lO) 0.84 

C<2)-%4) 0.90 C<5)-wll) 1.07 
c(2)-Hc5j 
fX2)1I<6) 

Bond angles 

C<l)_-AI--c<2) 
C(l)_-A1-C(3) 
C(2)_Al-C!13) 

0.93 C(6H-Vl2) 0.99 
0.87 C(7)_H(l3) 0.96 

113.1(2) C(1 )-Al-F 105.2(l) 
113.5(2) C<BtiAl-F 103.9w 
116.0(2) C(3)-AI-F 103.5 (1) 

c&j--~(4)_C<5)b 121.6(6) C<fG-C(6)-CX7) 120.5 (6) 

C(4)-C<5)--Cf6) 118.2(6) C(6)_C(7)_C(6)b 121.0<6) 

o Standard deviations of all carbon--hydrogen distances are 0.05 A 
b Related to C(6) and C(6) by the symmetry operation (x. 45-Y. a). 
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